
NAG C Library Function Document

nag_zgerfs (f07avc)

1 Purpose

nag_zgerfs (f07avc) returns error bounds for the solution of a complex system of linear equations with

multiple right-hand sides, AX ¼ B, ATX ¼ B or AHX ¼ B. It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zgerfs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer nrhs,
const Complex a[], Integer pda, const Complex af[], Integer pdaf,
const Integer ipiv[], const Complex b[], Integer pdb, Complex x[],
Integer pdx, double ferr[], double berr[], NagError *fail)

3 Description

nag_zgerfs (f07avc) returns the backward errors and estimated bounds on the forward errors for the

solution of a complex system of linear equations with multiple right-hand sides AX ¼ B, ATX ¼ B or

AHX ¼ B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag_zgerfs (f07avc) in terms of a single right-hand side b
and solution x.

Given a computed solution x, the function computes the component-wise backward error �. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

ðAþ �AÞx ¼ bþ �b
j�aijj � �jaijj and j�bij � �jbij:

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max
i

jxi � x̂xij=max
i

jxij

where x̂x is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f07 – Linear Equations (LAPACK) f07avc

[NP3645/7] f07avc.1

2: trans – Nag_TransType Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

if trans ¼ Nag NoTrans, the linear equations are of the form AX ¼ B;

if trans ¼ Nag Trans, the linear equations are of the form ATX ¼ B;

if trans ¼ Nag ConjTrans, the linear equations are of the form AHX ¼ B.

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: nrhs – Integer Input

On entry: r, the number of right-hand sides.

Constraint: nrhs � 0.

5: a½dim� – const Complex Input

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n original matrix A as supplied to nag_zgetrf (f07arc).

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

7: af½dim� – const Complex Input

Note: the dimension, dim, of the array af must be at least maxð1; pdaf � nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in af ½ðj� 1Þ � pdaf þ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in af ½ði� 1Þ � pdaf þ j� 1�.
On entry: the LU factorization of A, as returned by nag_zgetrf (f07arc).

8: pdaf – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array af.

Constraint: pdaf � maxð1; nÞ.

9: ipiv½dim� – const Integer Input

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On entry: the pivot indices, as returned by nag_zgetrf (f07arc).

10: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least maxð1;pdb� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdb� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.

f07avc NAG C Library Manual

f07avc.2 [NP3645/7]

On entry: the n by r right-hand side matrix B.

11: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order ¼ Nag ColMajor, pdb � maxð1;nÞ;
if order ¼ Nag RowMajor, pdb � maxð1; nrhsÞ.

12: x½dim� – Complex Input/Output

Note: the dimension, dim, of the array x must be at least maxð1;pdx� nrhsÞ when
order ¼ Nag ColMajor and at least maxð1; pdx� nÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix X is stored in x½ðj� 1Þ � pdxþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix X is stored in x½ði� 1Þ � pdxþ j� 1�.
On entry: the n by r solution matrix X, as returned by nag_zgetrs (f07asc).

On exit: the improved solution matrix X.

13: pdx – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order ¼ Nag ColMajor, pdx � maxð1; nÞ;
if order ¼ Nag RowMajor, pdx � maxð1;nrhsÞ.

14: ferr½dim� – double Output

Note: the dimension, dim, of the array ferr must be at least maxð1; nrhsÞ.
On exit: ferr½j� 1� contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j ¼ 1; 2; . . . ; r.

15: berr½dim� – double Output

Note: the dimension, dim, of the array berr must be at least maxð1; nrhsÞ.
On exit: berr½j� 1� contains the component-wise backward error bound � for the jth solution
vector, that is, the jth column of X, for j ¼ 1; 2; . . . ; r.

16: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, nrhs = hvaluei.
Constraint: nrhs � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdaf ¼ hvaluei.
Constraint: pdaf > 0.

f07 – Linear Equations (LAPACK) f07avc

[NP3645/7] f07avc.3

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdx ¼ hvaluei.
Constraint: pdx > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.
On entry, pdaf ¼ hvaluei, n ¼ hvaluei.
Constraint: pdaf � maxð1; nÞ.
On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.
On entry, pdb ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdb � maxð1; nrhsÞ.
On entry, pdx ¼ hvaluei, n ¼ hvaluei.
Constraint: pdx � maxð1; nÞ.
On entry, pdx ¼ hvaluei, nrhs ¼ hvaluei.
Constraint: pdx � maxð1; nrhsÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-

point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax ¼ b

or AHx ¼ b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2

real operations.

The real analogue of this function is nag_dgerfs (f07ahc).

9 Example

To solve the system of equations AX ¼ B using iterative refinement and to compute the forward and
backward error bounds, where

f07avc NAG C Library Manual

f07avc.4 [NP3645/7]

A ¼

�1:34þ 2:55i 0:28þ 3:17i �6:39� 2:20i 0:72� 0:92i
�0:17� 1:41i 3:31� 0:15i �0:15þ 1:34i 1:29þ 1:38i
�3:29� 2:39i �1:91þ 4:42i �0:14� 1:35i 1:72þ 1:35i
2:41þ 0:39i �0:56þ 1:47i �0:83� 0:69i �1:96þ 0:67i

1
CCA

0
BB@

and

B ¼

26:26þ 51:78i 31:32� 6:70i
6:43� 8:68i 15:86� 1:42i

�5:75þ 25:31i �2:15þ 30:19i
1:16þ 2:57i �2:56þ 7:55i

1
CCA

0
BB@ :

Here A is nonsymmetric and must first be factorized by nag_zgetrf (f07arc).

9.1 Program Text

/* nag_zgerfs (f07avc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer berr_len, i, ferr_len, ipiv_len, j, n, nrhs;
Integer pda, pdaf, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *af=0, *b=0, *x=0;
double *berr=0, *ferr=0;
Integer *ipiv=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define AF(I,J) af[(J-1)*pdaf + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define AF(I,J) af[(I-1)*pdaf + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07avc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR
pda = n;
pdaf = n;
pdb = n;
pdx = n;

f07 – Linear Equations (LAPACK) f07avc

[NP3645/7] f07avc.5

#else
pda = n;
pdaf = n;
pdb = nrhs;
pdx = nrhs;

#endif
ipiv_len = n;
ferr_len = n;
berr_len = nrhs;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||

!(af = NAG_ALLOC(n * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * n, Complex)) ||
!(berr = NAG_ALLOC(berr_len, double)) ||
!(ferr = NAG_ALLOC(ferr_len, double)) ||
!(ipiv = NAG_ALLOC(ipiv_len, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy A to AF and B to X */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= n; ++j)
{

AF(i,j).re = A(i,j).re;
AF(i,j).im = A(i,j).im;

}
}

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= nrhs; ++j)
{

X(i,j).re = B(i,j).re;
X(i,j).im = B(i,j).im;

}
}

/* Factorize A in the array AF */
f07arc(order, n, n, af, pdaf, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07arc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute solution in the array X */
f07asc(order, Nag_NoTrans, n, nrhs, af, pdaf, ipiv, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Improve solution, and compute backward errors and */

f07avc NAG C Library Manual

f07avc.6 [NP3645/7]

/* estimated bounds on the forward errors */
f07avc(order, Nag_NoTrans, n, nrhs, a, pda, af, pdaf, ipiv, b, pdb, x,

pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07avc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,

Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\nBackward errors (machine-dependent)\n");

for (j = 1; j <= nrhs; ++j)
Vprintf("%11.1e%s", berr[j-1], j%4==0 ?"\n":" ");

Vprintf("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf("%11.1e%s", ferr[j-1], j%4==0 || j==nrhs ?"\n":" ");
END:
if (a) NAG_FREE(a);
if (af) NAG_FREE(af);
if (b) NAG_FREE(b);
if (x) NAG_FREE(x);
if (berr) NAG_FREE(berr);
if (ferr) NAG_FREE(ferr);
if (ipiv) NAG_FREE(ipiv);
return exit_status;

}

9.2 Program Data

f07avc Example Program Data
4 2 :Values of N and NRHS

(-1.34, 2.55) (0.28, 3.17) (-6.39,-2.20) (0.72,-0.92)
(-0.17,-1.41) (3.31,-0.15) (-0.15, 1.34) (1.29, 1.38)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) (1.72, 1.35)
(2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A
(26.26, 51.78) (31.32, -6.70)
(6.43, -8.68) (15.86, -1.42)
(-5.75, 25.31) (-2.15, 30.19)
(1.16, 2.57) (-2.56, 7.55) :End of matrix B

9.3 Program Results

f07avc Example Program Results

Solution(s)
1 2

1 (1.0000, 1.0000) (-1.0000,-2.0000)
2 (2.0000,-3.0000) (5.0000, 1.0000)
3 (-4.0000,-5.0000) (-3.0000, 4.0000)
4 (0.0000, 6.0000) (2.0000,-3.0000)

Backward errors (machine-dependent)
9.1e-17 7.2e-17

Estimated forward error bounds (machine-dependent)
5.9e-14 7.6e-14

f07 – Linear Equations (LAPACK) f07avc

[NP3645/7] f07avc.7 (last)

	f07avc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	nrhs
	a
	pda
	af
	pdaf
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

