f07 — Linear Equations (LAPACK) f07avc

NAG C Library Function Document

nag zgerfs (f07avc)

1 Purpose

nag_zgerfs (f07avc) returns error bounds for the solution of a complex system of linear equations with

multiple right-hand sides, AX = B, ATX =B or A”X =B It improves the solution by iterative
refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_zgerfs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer nrhs,
const Complex a[], Integer pda, const Complex af[], Integer pdaf,
const Integer ipiv[], const Complex b[], Integer pdb, Complex x[],
Integer pdx, double ferr[], double berr[], NagError *fail)

3 Description

nag_zgerfs (f07avc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex system of linear equations with multiple right-hand sides AX = B, ATX =B or

A" X = B. The function handles each right-hand side vector (stored as a column of the matrix B)
independently, so we describe the function of nag zgerfs (f07avc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)e = b+ 6
|6a;;| < Bla;;| and [6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — Z;|/ max |z,
1 (2

where Z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f07ave. 1

f07ave NAG C Library Manual

2: trans — Nag TransType Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

if trans = Nag_NoTrans, the linear equations are of the form AX = B;
if trans = Nag_Trans, the linear equations are of the form A7 X = B;
if trans = Nag_ConjTrans, the linear equations are of the form Alx = B.

Constraint: trans = Nag _NoTrans, Nag_Trans or Nag_ConjTrans.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim] — const Complex Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, 7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the n by n original matrix A as supplied to nag_zgetrf (f07arc).

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

7: af[dim] — const Complex Input
Note: the dimension, dim, of the array af must be at least max(1, pdaf x n).

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in af[(j — 1) x pdaf + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix is stored in af[(i — 1) x pdaf + j — 1].

On entry: the LU factorization of A, as returned by nag_zgetrf (f07arc).

8: pdaf — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array af.

Constraint: pdaf > max(1,n).

9: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On entry: the pivot indices, as returned by nag_zgetrf (f07arc).

10: bldim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

f07ave.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07avc

11:

On entry: the n by r right-hand side matrix B.

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

12: x[dim] — Complex Input/Output
Note: the dimension, dim, of the array x must be at least max(1,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) X pdx + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].
On entry: the n by r solution matrix X, as returned by nag_zgetrs (f07asc).

On exit: the improved solution matrix X.

13: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

14: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,n

15 berr[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound (3 for the jth solution
vector, that is, the jth column of X, for j=1,2,....7.

16: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdaf = (value).
Constraint: pdaf > 0.

[NP3645/7] f07ave.3

f07ave NAG C Library Manual

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdaf = (value), n = (value).
Constraint: pdaf > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n? real floating-

point operations. Each step of iterative refinement involves an additional 24n* real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b

or A7z = b; the number is usually 5 and never more than 11. Each solution involves approximately 8n°
real operations.

The real analogue of this function is nag_dgerfs (f07ahc).
9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

f07ave.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07avc

and

—1.34 +2.55¢ 0.28 +3.17: —6.39 —2.20¢ 0.72 — 0.92¢
—0.17 — 1.41¢ 331 —-0.15¢ —0.15+1.34¢ 1.29 4+ 1.38:
—329-239 —191+442; —-0.14—1.35; 1.72 +1.35¢

2414039 —-056+1.47¢ —-0.83—-0.697 —1.96+0.67¢

26.26 +51.78; 3132 — 6.70¢
6.43 — 8.68; 15.86 — 1.42:
—5.75425317 —2.15+30.19:
1.16 + 2.57: —2.56+ 7.55¢

B:

Here A is nonsymmetric and must first be factorized by nag_zgetrf (f07arc).

9.1 Program Text

/* nag_zgerfs (f
* Copyright 200

* Mark 7, 2001.
*/

#include <stdio.
#include <nag.h>
#include <nag_st
#include <nagf07
#include <nagx04

int main(void)

{
/* Scalars */

07avc) Example Program.

1 Numerical Algorithms Group.

h>

dlib.h>
.h>
.h>

Integer Dberr_len, i, ferr_len, ipiv_len, j, n, nrhs;

Integer pda,

pdaf, pdb, pdx;

Integer exit_status=0;

NagError fail;
Nag_OrderType
/* Arrays */
Complex *a=0,
double #*berr=
Integer *ipiv=

#ifdef NAG_COLUM
#define A(I,J) a
#define AF(I,J)
#define B(I,J) b
#define X(I,J) x
order = Nag_Co
#else
#define A(I,J) a
#define AF(I,J)
#define B(I,J) b
#define X(I,J) X
order = Nag_Ro
#endif

INIT_FAIL(fail
Vprintf ("f07av

/* Skip headin
Vscanf ("%* ["\n
Vscanf ("%1d%1d

#ifdef NAG_COLUM
pda = n;
pdaf = n;
pdb = n;
pdx = n;
[NP3645/7]

order;

*af=0, *b=0, *x=0;
0, *xferr=0;
0;

N_MAJOR

[(J-1)*pda + I - 1]
af[(J-1)*pdaf + I - 1]
[(J-1)%pdb + I - 1]
[(J-1)*%pdx + I - 1]
1Major;

[(I-1)*pda + J - 1]
af[(I-1)*pdaf + J - 1]
[(I-1)*pdb + J - 1]
[(I-1)*pdx + J - 1]
wMajor;

) ;

¢ Example Program Results\n\n");

g in data file */

1 ");

%s*[*\n] ", &n, &nrhs);
N_MAJOR

f07ave.5

f07avc

#else
pda = n;
pdaf = n;
pdb = nrhs;
pdx = nrhs;

#endif
ipiv_len = n
ferr_len = n
berr_len = n

/* Allocate
if (!(a = N

b = N
x = N
berr
ferr

1
!
1
!
1
! (ipiv

(a
(
(
(
(
(

{
Vprintf (
exit_sta

memory */

AG_ALLOC(n * n,
NAG_ALLOC(n * n,
AG_ALLOC(n * nrhs,
AG_ALLOC(n * n,
= NAG_ALLOC (berr_1len,
NAG_ALLOC(ferr_len,
= NAG_ALLOC (ipiv_len,

Complex))
Complex))
Complex))

Complex)) ||

double))
double))

Integer))

"Allocation failure\n")

tus = -1;

goto END;

}

/* Read A an
for (1 = 1;
{
for (j =
Vscanf
}
Vscanf ("%
for (i =

{

*
lr

for (3 =
Vscanf
}

Vscanf (

for (i =

{

1;

for (3 =

/* Factorize

fO07arc(order

if (fail.cod
{

Vprintf ("Error from fO7arc.\n%s\n"
exit_status =

d B from data file,
i <= n; ++i)

1;
(" (

j <= n;
s1f ,

++3)
$1f)", &A
ll) ;

["\n]
i <= n;

++1)
1;
("

j <= nrhs;
$1f , %1f

++3)
)"y,
\n n);
i <= n; ++1)

1; 3

A in the array AF x/
, n, n, af, pdaf,
e != NE_NOERROR)

1;

goto END;

}

ipiv,

(i,3)

B(i,J)

/* Compute solution in the array X */

fO07asc(order
if
{

Vprintf ("Error from fO7asc.\n%s\n",
exit_status =

(fail.code

, Nag_NoTrans, n,
= NE_NOERROR)

1;

goto END;

}

/* Improve s

f07avc.6

olution,

nrhs,

.re,

.re,

&fail);

|
|
)

A(i,3).im

B(i,J).im

NAG C Library Manual

and copy A to AF and B to X */

)i

)

fail.message) ;

af, pdaf,

ipiv,

x, pdx, &fail);

fail.message) ;

and compute backward errors and */

[NP3645/7]

f07 — Linea

r Equations (LAPACK)

/* estimated bounds on the forward errors */

fO7avc(order, Nag_NoTrans, n, nrhs,

if (fai
{

pdx, ferr, berr, &fail
l.code != NE_NOERROR)

a,

)

Vprintf ("Error from fO7avc.\n%s\n",

exi
got
}

/* Prin

t_status = 1;
o END;

pda,

af, pdaf,

fail.message) ;

t solution */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fai
{

l.code != NE_NOERROR)

Vprintf ("Error from x04dbc.\n%s\n",

exi
got
}

Vprintf (

for (3

Vprintf("s1ll.1le%s", berr[j-11,

t_status
o END;

1;

"\nBackward errors

= 1; j <= nrhs; ++j)

fail.message) ;

j%4==0 ?"\n":"

(machine-dependent)\n") ;

")

(machine-dependent)\n") ;

n u);

j==nrhs ?"\n":

ipiv, b, pdb,

f07avc

Xy

:Values of N and NRHS

:End of matrix A

:End of matrix B

Vprintf ("\nEstimated forward error bounds
for (j = 1; j <= nrhs; ++3j)
Vprintf ("%1ll.less", ferr[j-1], j%4==0
END:
if (a) NAG_FREE(a);
if (af) NAG_FREE (af);
if (b) NAG_FREE(Db);
if (x) NAG_FREE(x);
if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE(ferr);
if (ipiv) NAG_FREE (ipiv) ;
return exit_status;
¥
9.2 Program Data
fO07avc Example Program Data
4 2
(-1.34, 2.55) (0.28, 3.17) (-6.39,-2.20)
(-0.17,-1.41) (3.31,-0.15) (-0.15, 1.34)
(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35)
(2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69)
(26.26, 51.78) (31.32, -6.70)
(6.43, -8.68) (15.86, -1.42)
(-5.75, 25.31) (-2.15, 30.19)
(1.16, 2.57) (-2.56, 7.55)
9.3 Program Results
fO7avc Example Program Results
Solution(s)
1 2
1 (1.0000, 1.0000) (-1.0000,-2.0000)
2 (2.0000,-3.0000) (5.0000, 1.0000)
3 (-4.0000,-5.0000) (-3.0000, 4.0000)
4 (0.0000, 6.0000) (2.0000,-3.0000)
Backward errors (machine-dependent)
9.1le-17 7.2e-17
Estimated forward error bounds (machine-dependent)
5.9e-14 7.60e-14

[NP3645/7]

f07ave.7 (last)

	f07avc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	nrhs
	a
	pda
	af
	pdaf
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

